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Abstract

Microstructural investigations below the fracture surface have revealed that the rubber particles in a number of polymer-rubber blends
were deformed into remarkable S-like shapes. These shapes seem to have been largely ignored in previous microstructural studies of blends,
but in fact cannot be explained from the known deformation states around a crack. We hypothesize in this paper that these shape changes
develop as a consequence of macroscopic shearing of the blend as the crack front sweeps through the material. Large strain, finite element
models for simple shearing of a blend are reported which demonstrate the evolution of round particles into S-shape ones for a range of
material parameters, and thus support our hypothesis. The ‘microscopic’ localized deformation processes are identified, and the implications
for the toughening mechanism in these blends is discussed.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The role of rubber particles in the toughening of amor-
phous or of semi-crystalline polymers is now understood
quite well in a qualitative manner (e.g., [1,2]). If cavitation
of the rubber particles is achieved in regions of high tensile
stresses, the polymer can deform plastically by shear yield-
ing before craze initiation can take place. Ideally, this plas-
tic flow process is activated in the entire matrix material
between the particles thus resulting in massive energy dissi-
pation and hence increase of the fracture toughness. During
this process, the cavitated particles will change substantially
in shape and in volume.

As a result of the importance in the toughening process,
the plastic flow around particles was studied theoretically
since the 70’s [3–5]. More recent studies have incorporated
advanced material models for plasticity in an amorphous
matrix, including the pressure dependence of yielding,
intrinsic softening and orientational re-hardening at large
strains [6–8]. Most of these investigations have assumed
that after cavitation, the particle stiffness is so low that it
is mechanically equivalent to a void, but very recently a
coupled study of rubber particle cavitation and matrix plas-
ticity was carried out [9]. All of these cited works have
concentrated on the processes under macroscopic tension.

This means either purely uniaxial tension or with a super-
imposed hydrostatic tension as is characteristic for the state
of stress ahead of a crack tip. So called cavitation diagrams
were constructed [9] by considering the full range of stress
triaxialities.

The cited studies have all assumed that the particles are
packed periodically. In real blends, this is obviously not the
case, so that a precise comparison between the predicted
shapes of the cavitated particles and the experimentally
observed ones is difficult. Fig. 1(a) shows the distortion of
some particles in polybutadiene (PB) modified styrene-
acrylonitril (SAN) taken at a distance of 100mm from the
fracture surface. The smaller particles shown which have
cavitated have evolved into more or less ellipsoidal shapes.
Similar shapes were observed in high-impact polystyrene
(HIPS) where distributed crazing is an important matrix
deformation mechanism (e.g., [10]), in polycarbonate (PC)
blends which deform by shear yielding only (e.g., [11,12])
and in nylon blends (e.g., [13,14]). The shapes are consistent
with the predicted void shapes in [4–8] at these rather small
strain levels under tension with a mild stress triaxiality. The
large void visible in Fig. 1(a) has notable undulations at the
interface with the matrix. This may be due to large deforma-
tions around it, as predicted in [6–8], but it cannot be ruled
out that this is just caused by the clustering of a number of
regular-sized particles.

In contrast with these particle shapes, Fig. 1(b) shows
particles at a few particle diameters away from the fracture
surface (the observation that the particles right below the
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fracture surface seem hardly distorted was attributed in [15]
to relaxation enabled by melting of the fracture surface).
First of all, there is no visible evidence of particle cavitation,
so that no significant volumetric growth can have taken
place. Secondly, the elongated axis of the particles is
inclined at roughly 408 to the fracture surface and not paral-
lel to the remote tensile direction. Finally, the particles have
developed into characteristic S-like shapes which are
completely different from those found in Fig. 1(a). Similar
shapes were found near the fracture surface in nylon-rubber
blends [16,17] and to somewhat lesser extent in PC blends
[18]. Highly deformed cavitated particles that are also not
aligned with the tensile direction, i.e., that are not perpen-
dicular to the fracture surface, were observed in [14] too, but
they do not tend to have the typical S shape.

The origin of the particle shapes observed in Fig. 1(b) is
not at all straightforward. Clearly, they involve very large
strains, so that any small strain analysis would be unable to

predict these shapes. But also all large strain studies known
to the authors have never predicted shapes like these, not
even for the full range of stress triaxialities considered in
[9]. It is highly unlikely that the absence of predictions is
due to the assumed periodicity of the particle arrangement in
these theoretical studies. The particles seen in Fig. 1(b) are
obviously not periodically ordered, but they are not clus-
tered in any way that could explain the discrepancy. Another
more implicit assumption in the theoretical studies was that
the macroscopic deformation pattern possesses orthorhom-
bic symmetries. In a planar view, this means that there are
two orthogonal planes of symmetry, or two two-fold
symmetries. This is a very common and well-established
assumption in the micromechanics of damage solids for
predominantly tensile loading. However, the particle shapes
in Fig. 1(b) do not have this symmetry, but at best only one-
fold symmetry or inversion symmetry.

These considerations lead us to the hypothesis that the
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Fig. 1. TEM micrograph of a SAN-PB blend after fracture showing cavita-
tion (white regions) in a number of smaller rubber particles. The rubber is
stained in OsO4 and appears dark grey. The SAN matrix is the lighter gray.
(a) at approximately 100mm from the fracture surface (from [7]); (b) just
below the fracture surface (the arrow indicates the crack growth direction).

Fig. 2. (a) Model material with cylindrical particles and (b) planar unit cell
model for macroscopic simple shear deformation. Only half of the unit cell
needs to be analyzed due to point-symmetry. For this region, the finite
element mesh is shown.



S-shape of the particles has evolved during a macroscopic
simple shear process. This is a distinctly different deforma-
tion mode than pure shear, which can be decomposed into
two orthogonal tensile stretch processes and therefore
possesses orthorhombic symmetry. Simple shear involves
stretching and material rotation of equal magnitude, and
respects only inversion symmetry. This hypothesis is tested
by a specially designed unit cell analysis, which is outlined
in Sec. 2. The results obtained from numerical computations
with this model (Sec. 3) are then discussed (Sec. 4) in the
light of the characteristics of simple shearing and compared
with what one finds under pure shear deformation. From
this, we conclude with speculating on the deformation
modes around a propagating crack in a polymer blend
(Sec. 5).

2. Model for simple shear of blend

In order to avoid the computational burden of three-
dimensional computations, we consider a model material
that is essentially two dimensional. In the undeformed
state of the material, the rubber particles have a circular
cylindrical shape, have identical size and are arranged in a
square array as illustrated in Fig. 2(a). If, in the undeformed
state, the particle radius isa and 2b is the spacing between
particles, the area fraction of particles in a cross-section is
f � �p=4��a=b�2. To test our hypothesis, we imagine that the
material is subjected to macroscopic simple shear in the x-
direction parallel to the particle lattice. If the material would
be homogeneous, the deformation would be uniform. Then,
the rate of changedvi �i � 1;2� of all line elementdxi would
be given by the same velocity gradientLij according to
dvi � Lij dxj (summation over repeated indices implied).
For simple shear, the componentsLij with respect to the
�x1;x2� axes in Fig. 2(a) are of the form

�Lij � �
0 _G

0 0

 !
; �1�

with GÇ the shear rate. The corresponding components of
accumulated strain,Eij, and of stress,Sij, read
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with G the accumulated shear strain and�t the shear stress. In
the composite material considered here, the fields are not
uniform, and those in Eq. (2) represent the overall or macro-
scopic strain and stress.

As a result of of periodicity, we only need to consider a
2b × 2b unit cell containing a single particle (see Fig. 2(b)).
When we further make use of inversion symmetry about the
center of the particle, we only need to consider half of this
cell. As the deformations are expected to be confined mainly

to the ligament between particles (as indeed the results will
confirm), one would expect that the shear deformations near
the top or bottom of the unit cell are also almost uniform.
Therefore, we may simply apply the simple shear loading
through prescribed displacements on the top (and bottom) of
the unit cell. With the origin of the�x1;x2� coordinate system
at the particle center, the boundary conditions in terms of
velocitiesvi are

v1 � b _G ; v2 � 0 along x2 � b; 2b # x1 # b

with G the overall or macroscopic shear and the superposed
dot denoting the time derivative. The macroscopic response
will be monitored by the average�t of the shear stresss12

either along the top edge,

�t � 1
2b

Zb

2b
s12�x1;b�dx1;

or along the bottom edgex2 � 2b (by virtue of equilibrium,
the two are identical). The remaining ‘boundary conditions’
are periodicity along the sides of the cell,vi�b; x2� �
vi�2b; x2��ux2u # b�; and inversion symmetry,vi�x1;0� �
2vi�2xi;0�; alonga # ux1u # b:

Homogeneous shearing is a volume-preserving deforma-
tion mode, i.e.,Ekk � 0 according to Eq. (2). Hence, one
expects that the particle will be distorted mainly in shape
even if it would have a very low bulk modulus. Since the
shear modulus of rubbers are usually one to two orders of
magnitude smaller than the yield stress of the polymer
matrix, also the effect of shear deformations of the rubber
particle can be neglected. The rubber particle therefore
appears to be mechanically equivalent to a void under
shear deformations. Therefore, we actually replace the par-
ticle with a traction-free void. The computations to be
presented later have confirmed that the volume change of
the void is negligible compared to the overall shear strainG.

The material model used here was developed explicitly
for amorphous glassy polymers. It accounts for rate-depen-
dent shear yielding, the intrinsic softening that immediately
follows yield in amorphous polymers and the subsequent
strain hardening due to the stretching of the entanglement
network. The model closely follows the original ideas put
forward in one dimension by Haward and Thackray [19] in
which the strain hardening is represented by a Langevin
spring in parallel to a yielding element. The three-dimen-
sional theory that we use is based on work by Boyce et al.
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Table 1
The three sets of material parameters used in this study. The names are for
identification only; the parameter values are not intended to represent speci-
fic materials

E=s0 v sss=s0 As0=T h=s0 a N CR
=s0

SAN 12.6 0.38 0.79 52.2 12.6 0.25 12.0 0.033
PC 9.4 0.3 0.79 79.2 5.15 0.08 6.3 0.059
Nylon 29.7 0.41 1.0 77.0 0. 0.08 16.0 0.021
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Fig. 3. Shear stress (t) vs shear strain (G) response according to each of the three sets of parameters in Table 1 to homogeneous simple shear, i.e., in the absence
of particles or voids. The shear stress is normalized by the athermal shear strengths0 of the material.

Fig. 4. Average shear stress (�t) vs applied shear strain (G) for the three blends with particles/voids of sizea=b� 2=3. For SAN, results are also shown for
a=b� 1=2. The shear rates are the same as in Fig. 3. Symbols refer to the plots in Figs. 5–8.



[20], but employs the slightly modified version developed in
[21].

Rate-dependent yielding is taken to be described by the
expression

_gp � _g0exp 2
As0

T
1 2

t

s0

� �5=6
 !" #

; �3�

derived by Argon [22] for the plastic shear-rate_g p as a
function of the driving shear stresst. Here,gÇ0 is pre-expo-
nential factor,A is a material parameter that is proportional
to the activation volume,T is the absolute temperature and
s0 is the athermal shear strength. Boyce et al. [20] extended
this expression in a phenomenological way to include the
effect of pressure and strain softening. They uses1 ap

instead ofs0, wherep is the pressure anda is a pressure
dependence coefficient. Furthermore,s is assumed to evolve
with plastic straining from the initial values0 to a steady-
state valuesss, via

_s� h�1 2 s=sss� _g p
; �4�

to incorporate a phenomenological description of softening.
The rate of softening is governed by the material parameter
h.

The driving shear stresst in the flow rule Eq. (3) is
determined in the three-dimensional theory from

t �
�����������
1
2
�s 0ij �s 0ij

r
; �s ij � sij 2 bij ; �s 0ij � �s ij 2

1
3
�skkdij

wheresij is the local stress tensor andbij is the back stress
(i,j � 1,2,3 anddij is the Kronecker delta). The back stress is
an internal stress associated with the stretching of the entan-
glement network upon continued plastic deformation.
Following the suggestion in [19], this back stress is modeled
using non-Gaussian network theory. Thus, its principal
componentsbi have the same directions as the plastic
stretch, and are direct functions of the corresponding prin-
cipal plastic stretchesla . It was shown by Wu and Van der
Giessen [21] that the predictions of the full (or random)
network theory could be captured accurately in terms of
a simple combination of the classical three-chain
network description and the Arruda–Boyce [23] eight-
chain model:

bi � 1 2 r
ÿ �

b32ch
i 1 rb82ch

i ; �5�
with r being determined by the maximum plastic stretch
�l � max�l1;l2;l3� throughr � 0:85 �l =

���
N
p

: Here, N is a
statistical network parameter, which gives the average
number of links between entanglements (or cross-links in
rubber) and thus determines the limit stretchlmax of a
molecular chain aslmax�

���
N
p

: The principal back stress
componentsb32ch

i andb82ch
i are given by

b32ch
i � 1

3
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where L21 is the inverse of the Langevin function
L�b� � cothb 2 1=b. The material parameterCR is termed
the hardening modulus (in rubber elasticity, it is the shear
rubbery modulus). When the value of either�l or l c

approacheslmax, the hardening rate increases dramatically,
thereby effectively ‘locking’ the material for further flow.
The material model is implemented in finite element code
that duly accounts for large stain effects. The finite element
mesh used for this problem with a relative void size ofa=b�
0:5 is shown in Fig. 2. Further details on the material model
and the finite element formulation may be found in [6,21].
We only note that special care is needed in computations of
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Fig. 5. Distribution of local plastic shear rate_gp at various stage of macro-
scopic strainG in the SAN blend witha=b� 1=2. The plastic shear rates are
normalized with the macroscopic shear rateGÇ .



this type in order to keep them numerically stable. When
this is properly done, the material model has been shown to
be able under various deformation conditions to describe the
initiation of shear bands and their subsequent propagation
typical for amorphous glassy polymer (e.g., [6]).

3. Results

Calculations were carried our for different initial void

sizes, as expressed by the ratioa=b, and for various sets of
material parameters. Results will be presented for values of
a=b of 1/2 and 2/3, corresponding to initial volume fractions
f of approximately 20% and 35%, respectively. The three
sets of material parameters used in this study are listed in
Table 1. Although they do not represent actual material, the
three sets will be referred to as SAN, PC or Nylon, since
these sets give large strain responses that are characteristic
of these materials. The SAN data set gives rather strong
softening upon yield, the PC data yield somewhat less soft-
ening and smaller limit strain, while the Nylon data set
predicts no softening at all after yield (see Fig. 3). The
strain-rate dependence is governed by the value of_g0 rela-
tive to the applied shear rate_G : _G = _g0 � 9:43× 10211 for
SAN, and 5:0 × 10218 for PC and Nylon.

Fig. 4 shows the computed stress-strain curves for the
three materials with voids. The decrease in macroscopic
yield stress compared to the yield stress of the correspond-
ing matrix material is obvious. Quite interestingly though,
the presence of the voids has significantly changed the
differences among the three materials seen in Fig. 3, and
has effectively eliminated their limited deformability. This
change is connected to the differences in how local plasticity
evolves around the voids for the three materials. In order to
study this in more detail, Figs. 5–8 show contour plots of the
plastic shear rate_g p. These plots illustrate the development
of the current plastic zone around the voids with ongoing
overall straining.

It is seen from Figs. 5(a) and 6(a) that plasticity first
begins in the form of two crossed short shear bands near
the void surface at an angle of approximately2458 to the
shear direction. The shear bands are an immediate conse-
quence of the intrinsic softening upon yield in SAN. Due to
the constraint of surrounding material, this plastic flow is
confined to a small region and soon dies out. Then, plasticity
inside the ligaments between voids is activated. It initiates
in the center and rapidly evolves into a rather thin band
across the entire ligament (Figs. 5(b) and 6(b)). Very similar
shear band formation is also found in the other two materials
(PC: Fig. 7(a); Nylon: Fig. 8(a)).

Once the ligament has yielded, further deformation of the
material can be accommodated entirely by plastic shearing
inside these shear bands, especially of the materials that
exhibit significant strain softening after yield (i.e., SAN
and PC). In these materials, this ligament shearing therefore
results in a reduction of the overall macroscopic stress level
(Fig. 4). Localized shearing continues until the strains inside
the band become so large that the molecular chains become
extended and hardening sets in, just like in homogeneous
shearing (Fig. 3).

Once hardening has developed to a sufficient level, neigh-
boring material becomes prone to yield. Due to the simul-
taneous softening inside this region and the further
hardening of the material inside the original shear band,
the latter can no longer flow and locks up. As a result,
localized shearing is now confined to two shear bands on
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Fig. 6. Distribution of normalized local plastic shear rate_g p at various
stages of macroscopic strainG in the SAN blend witha=b� 2=3.



either side of the original one. This is most clearly seen for
SAN with a=b� 1=2 in Fig. 5(c). The process of yielding,
flowing and hardening can then repeat itself and causes the
shear bands to propagate perpendicular to the shearing
direction, so as to leave a band of sheared material with
increasing width. This trend is observed more or less neatly
for all cases analyzed, although also other shear bands are
initiated for the larger value ofa=b (last snapshots of Figs.
5–8).

In all cases, the voids take on an elongated S-like shape at

large shear strains. The longest axis starts out at an angle of
458 to the shearing direction and this orientation gradually
rotates with continued shearing. It is clear from the Figs. 5–
8 that the S-shape is a direct consequence of the propagative
shear bands between voids. At the surface of the voids,
where a shear band in the matrix terminates, a kink is vis-
ible. The sharpness of this kink depends primarily on the
level of localization in shear bands, which in turn is
controlled by the amount of softening experienced by the
material. The larger the softening (in ascending order:
Nylon, PC, SAN), the sharper the kink is.

The results presented for SAN in Figs. 5 and 6 show that
the void evolution does not depend significantly on the ratio
a=b or, equivalently, on the normalized inter-particle
distance�b 2 a�=b. The reason is that there is no overlapping
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Fig. 7. Distribution of normalized local plastic shear rate_g p at various
stages of macroscopic strainG in the PC blend witha=b� 2=3.

Fig. 8. Distribution of normalized local plastic shear rate_g p at various
stages of macroscopic strainG in the Nylon blend witha=b� 2=3.



of or interaction between shear bands that depends on the
width of the ligament,b 2 a. Within reasonable bounds on
a=b, materials with a different ligament size exhibit the same
stages of localized deformation, although, of course, at
different levels of stress and strain (Fig. 4).

In all cases, the change in volume of the voids remained
smaller than about 1%, except for SAN where volume
increases of up to 4% were observed, but only at the largest
strains. This justifies our approximation of replacing rubber
particles by voids.

4. Discussion

Local plasticity has been seen to initiate (Figs. 5(a), 6(a))
prior to macroscopic yielding (cf. Fig. 4). Macroscopic yield

occurs by a shear band that connects adjacent voids. A
simple estimate of the macroscopic yield stress�ty can be
obtained by equating the average shear stress over the liga-
ment between voids,�t lig ; to the intrinsic shear yield stress
ty; of the matrix material at the macroscopic shear rate.
It follows from equilibrium that �t � 1 2 a=b� � �t lig ; so
that the macroscopic yield stress can be estimated as
�ty � 1 2 a=b� �ty. With an intrinsic yield stressty < 0:4so

(Fig. 3), the macroscopic yield stress in a blend witha=b�
1=2 is approximately�ty � 0:2s0, while it is �ty < 0:13s0

when a=b� 2=3. These estimates agree rather well with
the numerical values in Fig. 4.

It was mentioned in the previous section that the typical
S-shape of the voids is a consequence of the propagating
shear bands under overall simple shear. To emphasize the
role of the shear bands, Fig. 9 shows the evolution of a
circular region of a homogeneous material under (uniform)
simple shear. This is identical to the case where the proper-
ties of the particles are identical to those of the matrix. The
deformed shape is governed directly by the time integral of
the velocity gradient in (1). It shares with the computed void
shapes in Figs. 5–8 the characteristic feature that it elon-
gates and rotates towards the shearing. However, it cannot
but retain an elliptical shape. The S shape requires signifi-
cant localized deformations.

Moreover, the overall deformation must contain a signif-
icant rotation. Simple shear is a deformation process in
which the average rate of rotation is equal to the average
rate of straining. In order to demonstrate the necessity of
material rotation, we shall briefly consider the same model
material as in Fig. 2(a) but subjected to pure shear, as illu-
strated in Fig. 10. The velocity gradient for pure shear reads

Lij

� �
� 0 _G =2

_G =2 0

 !
; �8�
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Fig. 9. Evolution of a circle on a material that deforms by uniform simple
shear at various overall shear strainsG (cf. Fig. 6).

Fig. 10. (a) Model material subjected to pure shear. As a result of of two-fold symmetries only a quarter of the unit cell (hatched) needs to be analyzed.(b)
equivalent quarter cell subject to equal tension-compression.



as opposed to the simple shear expression Eq. (1). Hence,
pure shear does not contain a rate of rotation but the accu-
mulated strain is the same as under simple shear, see Eq.
2(a). As shown in Fig. 10(a), the material under this loading
configuration has additional two-fold symmetry in diagonal
directions. As a consequence, it is possible to identify
another unit cell, oriented at 458. With respect to associated
local axesx̂i (see Fig. 10(b)), the velocity gradient trans-
forms into

L̂ij

� �
� 2 _G =2 0

0 _G =2

 !
; �9�

so that the pure shear problem is equivalent to normal
tension in thex̂2 direction and simultaneous compression
of the cell in the x̂1 direction. The latter problem (Fig.
10(b)) is of the type analyzed previously in [6,8]. With
reference to these cited works for the method of analysis,
we show results for this problem for the SAN parameter set
and witha=b� 2=3 in Figs. 11 and 12.

The stress-strain curves show that the macroscopic yield
stress under pure shear deformations is roughly the same as
that for simple shear (the fact that the elastic stiffness under
pure shear is slightly different from that under simple shear
is a second-order effect due to the kinematic constraint in
thex2 direction imposed by simple shear, which vanishes for
small void volume fractions). However, the stress drop after
yield is less distinct than under simple shear, and this is
caused by a different post-localization behaviour. There
are similarities in the types of shear bands formed at the

respective yield points, cf. Fig. 6(a) with Fig. 12(a),
although under pure shear more sets of shear bands are
needed to accommodate the deformation. Continued defor-
mation under pure shear (Fig. 12(b),(c)) leads also to the
initiation and propagation of shear bands across the liga-
ments, but not only in the horizontal direction as in simple
shear (Figs. 6(b),(c)) since also the corresponding vertical
shear bands are needed for symmetry. As a consequence, the
shape changes of the void/particle (Fig. 12(d)) retain two
two-fold symmetries and are therefore distinctly different
from the S-shapes predicted under simple shear (Fig.
6(d)). Apparently, it is the rotation implied in simple shear
that breaks the symmetry and therefore allows the material
to develop the S-shape voids/particles.

5. Implications and Conclusion

The results presented in Sections 3 and 4 confirm our
hypothesis that the S-shaped particles seen just below the
fracture surface in ABS (Fig. 1(b)) are due to macroscopi-
cally large strain simple shear of the blend. This is quite
remarkable, since such deformation modes are rather
seldomly observed in the fracture of materials, at least at a
macroscopic scale. Fracture of ductile crystals of metals do
show intense shear banding, but this happens at the scale of
nanometers and is caused by discrete slip processes on well-
defined crystallographic planes. Also, for the type of blends
considered here, shear banding is not the only deformation
mode. Usually, the cavitated particles at some distance
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Fig. 11. Average shear stress response to pure shear vs simple shear for the SAN blend witha=b� 2=3. TheA’s refer to Fig. 6 and theS’s to Fig. 12.



ahead of the crack tip have a more or less elongated shape
(see e.g., Fig. 1(a)), as mentioned in the Introduction. On the
basis of these observations we now speculate (see Fig. 13)
that ahead of the tip of a propagating crack in a blend show-
ing deformed particles as in Fig. 1(b) there will be a region
of predominant macroscopic tension (with elongated, cavi-
tated particles) and a region of intense shearing behind the
moving crack tip (with S-shaped particles). In between,
there will be a complex transition region.

The existence of two such regions may have a significant
influence on the toughening effect of the particles in such a
blend. As is generally accepted now, the function of the
particles in the first, tensile, region is to prevent crazing of
the matrix and to trigger plastic yielding. However, as the
deformations in the second region can become very large, a
significant part of the actual energy that is dissipated during
crack extension can be expended in the shear region behind
the crack tip. Though counterintuitive this may be,
nonlinear fracture mechanics has in fact identified a number
of material systems over the last decade that owe their
toughness to processes taking place in the wake of the
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Fig. 12. Distribution of normalized local plastic shear rate_gp at various stages of macroscopic strainG in the SAN blend witha=b� 2=3 under pure shear. The
corresponding simple shear results are in Fig. 6.

Fig. 13. Schematic of the suggested existence of distinctly different zones
around a propagating crack in some polymer blends: a tensile region ahead
of the tip, where particles cavitate and deform into elongated shapes and a
shear region in the wake of the crack. The transition in between is unclear at
this stage.



crack. A typical example is zirconia-toughened ceramics. In
this material, toughening is caused by the strains caused by a
phase transformation behind the crack tip; the transforma-
tion in front of the crack actually tends to embrittle the
material [24].

In view of the relatively small number of reports in
the open literature about S-shaped particles below the
fracture surface, it is likely that an intense shear region
in the wake of the crack will occur only in certain
blends. The question as to when it takes place cannot
be easily answered. The reason is that it is far from
being trivial to see why and how the transition from
tensile-dominated deformations to shearing takes place
as the crack grows. This transition is not only controlled
by the stress state behind the crack but by the entire
stress and deformation fields around the moving crack
tip. These in turn are controlled by the overall beha-
viour of the blend, including particle cavitation and
plasticity in the cavitated material. These fields are totally
unknown at the moment. Theoretical confirmation of the
speculated picture in Fig. 13 thus requires analysis of the
full crack growth problem in a material exhibiting this
specific material behaviour. Experimental confirmation
may be possible by application of a ‘grid’ with a spacing
on the order of the particle spacing, so that the history of
strain and of rotation (indicative of simple shear) can be
followed.
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